Глава I

КЛАССИЧЕСКИЕ СПОСОБЫ ПРЕОБРАЗОВАНИЯ
ОРТОГОНАЛЬНЫХ ПРОЕКЦИЙ

Ввиду того что эти способы достаточно подробно освещены в учебниках и многочисленных пособиях по начертательной геометрии, в книге приводится лишь краткое изложение существа этих способов и даны примеры решения некоторых задач.

§ 1. Основные понятия

Классические способы преобразования ортогональных проекций основаны на изменении относительного положения проецируемой фигуры и плоскостей проекции при сохранении ортогональности проецирования.

Это изменение может быть осуществлено двумя понятиями:

  • Во-первых, перемещением в пространстве проецируемой фигуры в новое положение, при котором ее вспомогательные проекции на координатные плоскости (которые при этом преобразовании не меняют своего положения в пространстве) будут иметь наиболее удобный вид (способ вращения);
  • во-вторых, перемещением плоскостей проекций в новое положение, при котором проецируемая фигура (которая не меняет своего положения в пространстве) окажется в наиболее выгодном положении для получения удобного вида вспомогательных проекций (способ перемены плоскостей проекций).

Взаимное положение проецируемой фигуры и плоскостей проекций способом вращения изменяется путем поворота фигуры вокруг одной или последовательно нескольких осей.

Количество последовательных вращений, положение осей и величина угла, на который необходимо произвести поворот, определяются исходным положением фигуры по отношению к плоскостям проекций и требованиями задачи, которые определяют наиболее удобный вид вспомогательных проекций.

10

В зависимости от положения оси по отношению к плоскостям проекций способ вращения подразделяют на способы:

а) вращения, б) параллельного перемещения, в) вращения вокруг горизонтали и фронтали, г) совмещения1.

Сущность способа перемены плоскостей проекций состоит в замене одной или двух плоскостей новыми, на которых могут быть получены новые проекции, наиболее удобные для решения данной задачи.

Количество последовательных замен плоскостей и их положение зависят, как и в способе вращения, от исходного положения заданной фигуры по отношению к плоскостям проекций и условий поставленной задачи.

11


1 Следует иметь в виду, что вращение и параллельное перемещение можно рассматривать как один способ - вращение вокруг оси, перпендикулярной плоскости проекций, а вращение вокруг горизонтали или фронтали и совмещение - как способ вращения вокруг оси, параллельной плоскости проекций.
Rambler's Top100
Lib4all.Ru © 2010.