Длительное время считалось, что живое отличается от неживого такими свойствами, как обмен веществ, подвижность, раздражаемость, рост, размножение, приспособляемость. Однако порознь все эти свойства встречаются и среди неживой природы, а следовательно, не могут рассматриваться как специфические свойства живого.
Особенности живого Б.М. Медников (1982) сформулировал в виде аксиом теоретической биологии.
- Все живые организмы оказываются единством фенотипа и программы для его построения (генотипа), передающейся по наследству из поколения в поколение (аксиома А. Вейсмана)*.
- Генетическая программа образуется матричным путем. В качестве матрицы, на которой строится ген будущего поколения, используется ген предшествующего поколения (аксиома Н.К. Кольцова).
33
Рис. 2.4. Схема редупликации ДНК (по Дж. Севейдж, 1969)Примечание. Процесс связан с разделением пар оснований (аденин - ти-мин и гуанин - цитозин: А - Т, Г - Ц) и раскручиванием двух цепей исходной спирали. Каждая цепь используется как матрица для синтеза новой цепи
- В процессе передачи из поколения в поколение генетические программы в результате различных причин изменяются случайно и ненаправленно, и лишь случайно такие изменения могут оказаться удачными в данной среде (1-я аксиома Ч. Дарвина).
- Случайные изменения генетических программ при становлении фенотипа многократно усиливаются (аксиома Н.В. Тимофеева-Ресовского).
- Многократно усиленные изменения генетических программ подвергаются отбору условиями внешней среды (2-я аксиома Ч. Дарвина).
Из данных аксиом можно вывести все основные свойства живой природы, и в первую очередь такие, как дискретность и целостность -два фундаментальных свойства организации жизни на Земле. Среди живых систем нет двух одинаковых особей, популяций и видов. Эта уникальность проявления дискретности и целостности основана на явлении конвариантной редупликации.
Конвариантная редупликация (самовоспроизведение с изменениями) осуществляется на основе матричного принципа (сумма трех первых аксиом). Это, вероятно, единственное специфическое для жизни, в известной для нас форме ее существования на Земле, свойство. В основе его лежит уникальная способность к самовоспроизведению основных управляющих систем (ДНК, хромосом, генов).
Редупликация определяется матричным принципом (аксиома Н.К. Кольцова) синтеза макромолекул (рис. 2.4).
34
Способность к самовоспроизведению по матричному принципу молекулы ДНК смогли выполнить роль носителя наследственности исходных управляющих систем (аксиома А. Вейсмана). Конвариантная редупликация означает возможность передачи по наследству дискретных отклонений от исходного состояния (мутаций), предпосылки эволюции жизни.
Живое вещество по своей массе занимает ничтожную долю по сравнению с любой из верхних оболочек земного шара. По современным оценкам, общее количество массы живого вещества в наше время равно 2420 млрд т. Эту величину можно сравнить с массой оболочек Земли, в той или иной степени охваченных биосферой (табл. 2.2).
Таблица 2.2
Масса живого вещества в биосфере
Подразделения биосферы |
Масса, т |
Сравнение |
Живое вещество |
2.4 • 1012 |
1 |
Атмосфера |
5.15 • 1015 |
2146 |
Гидросфера |
1.5 • 1018 |
602 500 |
Земная кора |
2.8 • 1019 |
1 670000 |
По своему активному воздействию на окружающую среду живое вещество занимает особое место и качественно резко отличается от других оболочек земного шара, так же как живая материя отличается от мертвой.
В. И. Вернадский подчеркивал, что живое вещество - самая активная форма материи во Вселенной. Оно проводит гигантскую геохимическую работу в биосфере, полностью преобразовав верхние оболочки Земли за время своего существования. Все живое вещество нашей планеты составляет 1/11000000 часть массы всей земной коры. В качественном же отношении живое вещество представляет собой наиболее организованную часть материи Земли.
При оценке среднего химического состава живого вещества, по данным А.П. Виноградова (1975), В. Лархера (1978) и др., главные составные части живого вещества - это элементы, широко распространенные в природе (атмосфера, гидросфера, космос): водород, углерод, кислород, азот, фосфор и сера (табл. 2.3, рис. 2.5).
Живое вещество биосферы состоит из наиболее простых и наиболее распространенных в космосе атомов.
Средний элементарный состав живого вещества отличается от состава земной коры высоким содержанием углерода. По содержанию других элементов живые организмы не повторяют состава среды своего обитания. Они избирательно поглощают элементы, необходимые для построения их тканей.
35
Таблица 2.3
Элементарный состав звездного и солнечного вещества в сопоставлении с составом растений и животных
Химический элемент |
Содержание, % |
Звездное вещество |
Солнечное вещество |
Растения |
Животные |
Водород (Н) |
81,76 |
87,00 |
10,0 |
10,00 |
Гелий (Не) |
18,17 |
12,90 |
- |
|
Азот (N) |
|
0,28 |
3,00 |
|
Углерод (С) |
0,33 |
0,33 |
3,00 |
18,00 |
Магний (Мд) |
|
0,08 |
0,05 |
|
Кислород (О) |
0,03 |
0,25 |
79,00 |
65,00 |
Кремний (Si) |
|
|
|
|
Сера (S) |
0,01 |
0,04 |
0,15 |
0,254 |
Железо (Fe) |
|
|
|
|
Другие элементы |
0,001 |
0,04 |
7,49 |
3,696 |
Рис. 2.5. Соотношение химических элементов в живом веществе, гидросфере,
литосфере и в массе Земли в целом
36
В процессе жизнедеятельности организмы используют наиболее доступные атомы, способные к образованию устойчивых химических связей. Как уже было отмечено, водород, углерод, кислород, азот, фосфор и сера являются главными химическими элементами земного вещества и их называют биофипьными. Их атомы создают в живых организмах сложные молекулы в сочетании с водой и минеральными солями. Эти молекулярные постройки представлены углеводами, липидами, белками и нуклеиновыми кислотами. Перечисленные части живого вещества находятся в организмах в тесном взаимодействии. Окружающий нас мир живых организмов биосферы представляет собой сочетание различных биологических систем разной структурной упорядоченности и разного организационного положения. В связи с этим выделяют разные уровни существования живого вещества от крупных молекул до растений и животных различных организаций.
- Молекулярный (генетический) - самый низкий уровень, на котором биологическая система проявляется в виде функционирования биологически активных крупных молекул - белков, нуклеиновых кислот, углеводов. С этого уровня наблюдаются свойства, характерные исключительно для живой материи: обмен веществ, протекающий при превращении лучистой и химической энергии, передача наследственности с помощью ДНК и РНК. Этому уровню свойственна устойчивость структур в поколениях.
- Клеточный - уровень, на котором биологически активные молекулы сочетаются в единую систему. В отношении клеточной организации все организмы подразделяются на одноклеточные и многоклеточные.
- Тканевый - уровень, на котором сочетание однородных клеток образует ткань. Он охватывает совокупность клеток, объединенных общностью происхождения и функций.
- Органный - уровень, на котором несколько типов тканей функционально взаимодействуют и образуют определенный орган.
- Организменный - уровень, на котором взаимодействие ряда органов сводится в единую систему индивидуального организма. Представлен определенными видами организмов.
- Популяционно-видовой, где существует совокупность определенных однородных организмов, связанных единством происхождения, образом жизни и местом обитания. На этом уровне происходят элементарные эволюционные изменения в целом.
- Биоценоз и биогеоценоз (экосистема) - более высокий уровень организации живой материи, объединяющий разные по видовому составу организмы. В биогеоценозе они взаимодействуют друг с другом на определенном участке земной поверхности с однородными абиотическими факторами.
37
- Биосферный - уровень, на котором сформировалась природная система наиболее высокого ранга, охватывающая все проявления жизни в пределах нашей планеты. На этом уровне происходят все круговороты вещества в глобальном масштабе, связанные с жизнедеятельностью организмов.
По способу питания живое вещество подразделяется на автотрофы и гетеротрофы.
Автотрофами (от греч. autos - сам, trof - кормиться, питаться) называют организмы, берущие нужные им для жизни химические элементы из окружающей их костной материи и не требующие для построения своего тела готовых органических соединений другого организма. Основной источник энергии, используемый автотрофами, Солнце.
Автотрофы подразделяются на фотоавтотрофы и хемоавтотрофы. Фотоавтотрофы используют в качестве источника энергии солнечный свет, хемоавтотрофы используют энергию окисления неорганических веществ.
К автотрофным организмам относятся водоросли, наземные земные растения, бактерии, способные к фотосинтезу, а также некоторые бактерии, способные окислять неорганические вещества (хемоавтотрофы). Автотрофы являются первичными продуцентами органического вещества в биосфере.
Гетеротрофы (от греческого geter - другой) - организмы, нуждающиеся для своего питания в органическом веществе, образованном другими организмами. Гетеротрофы способны разлагать все вещества, образуемые автотрофами, и многие из тех, что синтезирует человек.
Живое вещество устойчиво только в живых организмах, оно стремится заполнить собой все возможное пространство. "Давлением жизни" называл данное явление В.И. Вернадский.
На Земле из существующих живых организмов наибольшей силой размножения обладает гриб-дождевик гигантский. Каждый экземпляр данного гриба может дать до 7,5 млрд спор. Если каждая спора послужила бы началом новому организму, то объем дождевиков уже во втором поколении в 800 раз превысил размеры нашей планеты.
Таким образом, наиболее общее и специфическое свойство живого - способность к самовоспроизведению, конвариантной редупликации на основе матричного принципа. Эта способность вместе с другими особенностями живых существ и определяет существование основных уровней организации живого. Все уровни организации жизни находятся в сложном взаимодействии как части единого целого. На каждом уровне действуют свои закономерности, определяющие особенности эволюции всех форм
38
организации живого. Способность к эволюции выступает как атрибут жизни, непосредственно вытекающий из уникальной способности живого к самовоспроизведению дискретных биологических единиц. Специфические свойства жизни обеспечивают не только воспроизведение себе подобных (наследственности), но и необходимые для эволюции изменения самовоспроизводящих структур (изменчивость).
39
*
Аксиомы названы по именам ученых, впервые описавших данное явление. Приводимые же краткие формулировки аксиом не принадлежат данным ученым.