3.9. ВЗРЫВООПАСНОСТЬ КАК ТРАВМИРУЮЩИЙ ФАКТОР ПРОИЗВОДСТВЕННОЙ СРЕДЫ

В производстве в большом количестве используются приборы, аппараты, технологические процессы, содержащие вещества, способные при определенных условиях образовывать взрывоопасную среду.

Быстрое изотермическое химическое превращение взрывоопасной среды, сопровождающееся выделением энергии и образованием опасных газов, способных производить работу, - называется "химическим" взрывом.

Взрыв или возгорание газообразных или смешанных горючих химических веществ наступает при определенном содержании этих веществ в воздухе, что приводит к разрушению и повреждению зданий и сооружении, технологических установок, емкостей и трубопроводов. На производстве при взрыве газовоздушной, паровоздушной смеси или пыли образуется ударная волна. Степень разрушения строительных конструкций, оборудования, машин и коммуникаций, а также поражение людей зависит от избыточного давления во фронте ударной волны ΔPф (разность между максимальным давлением во фронте

146

ударной волны и нормальным атмосферным давлением перед этим фронтом).

Расчеты оценки действия взрыва горючих химических газов и жидкостей сводятся к определению избыточного давления во фронте ударной волны (ΔPф) при взрыве газовоздушной смеси на определенном расстоянии (R) от емкости, в которой хранится определенное количество (Q) взрывоопасной смеси.

Для ориентировочного определения избыточного ΔPф (кПа), давления ударной волны пользуются эмпирическими формулами:

при К ≤ 2

ΔPф =
700
3 1 + 29,8 K3 - 1
;

при К > 2

ΔPф =
22
K lg K + 0,158
.

где К - эмпирический коэффициент, зависящий от R (м) и Q (т) и определяемый по формуле:

K = 0,24
R
17,3 Q
.

Максимальные значения избыточного давления во фронте ударной волны составляют при взрыве газовоздушной смеси 800 кПа, пылей - 700 кПа, паровоздушной смеси - 100...200 кПа. Если принять во внимание, что в производственных условиях взрывы, как правило, происходят в замкнутом помещении, то полное избыточное давление формируется за счет процессов отражения механической волны от стен и составляет величину в 5...6 раз большую избыточного давления, возникшего при взрыве.

Насколько велики представленные значения избыточного давления при взрывах, можно оценить по следующим примерам: для разрушения армированного остекления зданий требуется 5...10 кПа, деревянных строений - 10...20 кПа, кирпичных зданий - 25...30 кПа, железобетонных конструкций стен цеха - 100...150 кПа.

Действие ударной волны на человека менее 10 кПа считается безопасным, при избыточном давлении от 10 до 30 кПа происходят легкие поражения или легкопроходящие нарушения (звон в ушах, головокружение), при избыточном давлении от 30 до 60 кПа человек получает поражения средней тяжести (вывихи, контузии головного мозга), избыточные давления от 60 до 100 кПа наносят человеку тяжелые контузии и травмы, приводящие к длительной потере работоспособности, при избыточном давлении более 100 кПа происходят

147

крайне тяжелые контузии и травмы (переломы костей, разрывы внутренних органов), которые могут привести к гибели человека.

Источниками взрывоопасности на производстве могут быть установки, работающие под давлением, к ним относятся: паровые и водогрейные котлы, компрессоры, воздухосборники (ресиверы), газовые баллоны, паропроводы, газопроводы, автоклавы и др.

Взрывы паровых котлов представляют собой мгновенное высвобождение энергии перегретой воды в результате такого нарушения целостности стенок котла, при котором возможно мгновенное снижение внутреннего давления до атмосферного, наружного. Приведенное здесь определение взрыва носит физический характер ("физический" взрыв) и является адиабатическим, в отличие от "химического" взрыва, представляющего собой разновидность процесса горения.

При атмосферном давлении вода кипит при 100 °С в открытом сосуде. В закрытом сосуде, каким является паровой котел, начало кипения происходит при 100 °С, но образующийся при этом пар давит на поверхность воды и кипение прекращается. Чтобы вода продолжала кипеть в котле, необходимо ее нагревать до температуры, соответствующей давлению пара. Например, давлению 6 · 105 Па соответствует t = 169 °С; 8 · 105 Па - t = 171 °С; 12 · 105 Па - t = 189 °С и т.д.

Если после нагревания воды, например до 189 °С, прекратить подачу тепла в топку котла и нормально расходовать пар, то вода будет кипеть до тех пор, пока температура не станет ниже 100 °С. При этом чем скорее будет убывать давление в котле, тем интенсивнее будет кипение и парообразование за счет избытка тепловой энергии, содержащейся в воде. Этот избыток тепловой энергии при падении давления от максимального до атмосферного целиком расходуется на парообразование. В случае механического разрыва стенок котла нарушается внутреннее равновесие в котле и происходит внезапное падение давления до атмосферного.

Перегретая вода целиком превращается в пар. При этом образуется огромное количество пара (из 1 м воды 1700 м пара при нормальном давлении), что приводит к разрушению котла, помещения котельной или цеха, в котором установлен котел. Следовательно, независимо от величины рабочего давления в котле опасность таится не в паре, заполняющем паровое пространство котла, а в нагретой выше 100 °С воде, обладающей громадным запасом энергии и готовой в любое мгновение испариться при резком снижении давления.

Очевидно, что чем больше воды в котле на единицу поверхности нагрева, тем больше аккумулированной теплоты в ней и тем более взрывоопасен котел. В этой связи, с точки зрения безопасной эксплуатации, выбор типа котла и его конструкции для конкретных условий его применения имеет большое значение. Менее опасным по последствиям возможного взрыва являются котлы с малым объемом воды, приходящимся на 1 м2 поверхности нагрева. К этой группе относятся

148

водотрубные и прямоточные котлы. Наиболее опасными являются котлы цилиндрические с жаровыми трубами и батарейные. Подсчитано, что энергия, содержащаяся в 60 кг перегретой воды, находящейся в котле под давлением 5 · 105 Па, эквивалентна энергии 1 кг пороха.

Факторами нарушения целостности стенок котла, предшествующими его механическому разрыву, а следовательно, и взрыву, являются такие, которые вызывают перенапряжение материала котла, а именно:

  • 1) чрезмерное превышение расчетного давления при длительном воздействии на котел вызывает перенапряжение стенок (рассчитанных с определенным запасом прочности) и остаточные деформации растяжения, что увеличивает ползучесть материала. Это может произойти при порче предохранительных клапанов;
  • 2) понижение уровня воды (упуск воды) в котле до такого положения, когда нагреваемые пламенем стенки котла перестают охлаждаться водой и перегреваются. Это повышает их деформативность, что в свою очередь связано со снижением предела текучести металла при нагреве его до высокой температуры;
  • 3) недостатки конструкции и изготовления котла, например несоответствие материала котла современным расчетным параметрам котлов, дефекты сварки или клепки при изготовлении и т.п.;
  • 4) ветхость котла от долголетней эксплуатации и местные ослабления котла, в том числе в результате коррозии или накипи;
  • 5) нарушение технических требований при эксплуатации котла и невнимательное обслуживание и содержание котельных установок, особенно при низкой квалификации обслуживающего персонала.

Водогрейные котлы представляют такую же опасность, что и паровые котлы.

На производстве применяются поршневые компрессоры, приводимые в действие двигателем внутреннего сгорания и смонтированные вместе с ресивером на раме-прицепе. Эти компрессоры имеют производительность от 1 до 15 м3 всасываемого воздуха в 1 мин, а иногда и более. При этом наружный воздух перед поступлением в рабочий цилиндр компрессора проходит через фильтр, где он очищается от пыли; особую опасность (возможность взрыва) представляет горючая пыль. Воздушные компрессоры представляют известную опасность в отношении взрыва, в первую очередь вследствие возможного образования взрывоопасных смесей из продуктов разложения смазочных масел и кислорода воздуха. Разложение смазочных масел происходит под воздействием высоких температур, развивающихся в компрессорах в процессе сжатия воздуха или другого газа без охлаждения компрессора.

Взрывы баллонов во всех случаях представляют опасность независимо от того, какой газ в них содержится. Причинами взрывов могут быть удары (падения) как в условиях повышения температур от нагрева солнечными лучами или отопительными приборами, так и при низких

149

температурах и переполнение баллонов сжиженными газами. Взрывы кислородных баллонов происходят при попадании масел и других жировых веществ во внутреннюю область вентиля и баллона, а также при накоплении в них ржавчины (окалины). В связи с этим кислородные баллоны перед их наполнением промывают растворителями (дихлорэтаном, трихлорэтаном). Взрывы баллонов могут происходить и при ошибочном заполнении баллонов другим газом, например кислородного баллона горючим газом. Поэтому введена четкая маркировка баллонов, в силу которой все баллоны окрашивают в цвета, присвоенные каждому газу, а надписи на них делают другим цветом, также определенным для каждого газа.

Ударная волна, образующаяся при взрыве газовых баллонов высокого давления, достигает величины 300...800 кПа.

Нарушение нормального режима эксплуатации сосудов и установок, работающих под давлением, приводящие к превышению определенных пределов, могут привести к взрывам. Мощность взрыва зависит от величины работы взрыва и времени его действия. Например, при взрыве сосуда со сжатым газом происходит адиабатическое расширение сжатого газа, работа которого А (Дж) количественно может быть подсчитана из уравнения:

A = P1V [1 - (P2 / P1
K - 1
k
)] / (K - l) ,

где Р1 - начальное давление газа в сосуде, Па; V - объем сосуда, м3; К - показатель адиабаты; К = Cp / Cv - отношение удельных теплоемкостей газа при постоянных давлении и объеме (Дж/кг · 0К) (для воздуха К = 1,41); Р2 - конечное (атмосферное) давление Па.

150

Rambler's Top100
Lib4all.Ru © 2010.